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Abstract. In recent attempts to construct a statistical theory of nuclear reactions by doing 
statistics directly on the S-matrix elements, Dyson’s measure, which remains invariant 
under an automorphism that maps the space of unitary and symmetric matrices into itself, 
is of fundamental importance. In the present paper, we study some of the marginal 
distributions of the individual S-matrix elements, or of groups of them, that arise from 
Dyson’s measure. To understand the problem better, a similar discussion is first carried 
out for Haar’s measure of unitary matrices which d o  not have the restriction of symmetry, 
and some of the effects of this restriction are thus exhibited. Some applications of these 
mathematical results to reaction theory are discussed. 

1. Introduction 

In the traditional statistical theory of nuclear reactions (Kawai et a1 1973, Moldauer 
1975, 1978, Hofmann er a1 1975, Agassi et a1 1975) one constructs ensembles of 
scattering matrices S in terms of more ‘microscopic’ quantities, like the matrix elements 
of the Hamiltonian, the poles and residues of a K-matrix, etc. Recently, there have 
been attempts to do statistics directly on the S-matrix elements, by proposing a 
measure in the space of scattering matrices (Mello 1979, Mello and Seligman 1980, 
De 10s Reyes er a1 1980, Hofmann er a1 1981). The S-matrix is unitary because of 
flux conservation and, if the problem is time-reversal invariant, S is also symmetric. 
The first step is to define a measure that gives equal a priori probability to all unitary 
and symmetric matrices of a given order n. This intuitive notion can be defined 
precisely by asking for a measure d F  ( S )  that remains invariant under the automorphism 

s s = UOSUOT, 

that maps the space of unitary and symmetric matrices into itself. Here U o i s  an 
arbitrary unitary matrix and T denotes transposition. Dyson (1962) has shown that 
the condition 

(1.2) dw ( S )  = d p  ( UoSUoT) 
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defines the measure uniquely (up to a constant factor); dF(S)  will be referred to as 
Dyson’s measure. 

To make an analogy with the field of statistical mechanics, Dyson’s measure is the 
equivalent of the volume element in phase space, which assigns equal a priori prob- 
abilities in that space and remains invariant under canonical transformations. In both 
fields, ensembles that contain more information than the invariant one are then 
constructed by multiplying the latter by appropriate functions of S,  or of the coordinates 
and momenta, respectively. 

Since Dyson’s measure can be considered as the building block for the construction 
of more complicated ensembles, it is clearly important to study the distribution of 
individual S-matrix elements or groups of them that arise from such a measure. That 
study is the main purpose of the present paper. The results that we have been able 
to obtain are presented in § 3.1: specifically, we succeeded in calculating the joint 
distribution of any number of S-matrix elements in one row, and that of the four 
matrix elements contained in a 2 x 2 block along the diagonal, like (::: 

The condition of symmetry on the S-matrix complicates the various calculations 
considerably. One can learn a great deal by studying a simplified problem first: that 
of an ensemble of unitary matrices U, without the restriction of symmetry, governed 
by the invariant measure of the unitary group, i.e. Haar’s measure dh (U) ,  which 
remains invariant under the operation 

U +  0 = UOU or ri = UUO, (1.3a, b )  

P Pereyra and P A  Mello 

i.e. 

dh (U)=dh(UOU)  =dh(UUO). (1.4) 
Although many properties of Haar’s measure for the unitary group are well known, 

we first present in § 2.1 a brief analysis of some of the marginal distributions arising 
from dh(U) ,  since some of the results will be needed in the study of the S-matrix 
carried out in the following section; some other results will be used for comparison 
with the corresponding ones for the S-matrix, in order to understand better the effect 
of the symmetry requirement. 

In §§ 2.2 and 3.2 we discuss some applications to reaction theory of the mathemati- 
cal results contained in 09 2.1 and 3.1. The applications presented in § 3.2 are relevant 
to nuclear physics, whereas those of § 2.2 are not, because of the lack of symmetry, 
and are presented here as a useful exercise (they could be relevant to a system subject 
to a very strong magnetic field). The reader interested only in the mathematical 
aspects of the problem can skip §§ 2.2 and 3.2, since 00 2.1 and 3.1 are self-contained. 

2. The problem of unitary matrices U 

2.1. The joint marginal probability density for the U matrix elements 

As was outlined in the Introduction, we study in this section an ensemble of unitary 
matrices U of order n, not restricted by the condition of symmetry, and governed by 
Haar’s measure dh (U) of (1.4). 

We write 

UQb = xab  + i y Q b *  (2.1) 
Consider a set of k matrix elements Ualbl,. . . , Uarb,, and call dpo(Ualb,, . . . , Uatbk) 
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the probability assigned by Haar's measure to the volume element 
dXa,bl dyalbl . . . dxakbk dyakbk. We define the joint marginal probability density 
PO(Ualbl,. . . , Uakbk) associated with these variables by the relation 

dPo(Ualb1, * * * 3 U a k b k )  =PO(Ualblr . * 9 9 U a k b k )  dXalb1 dYalb1 dxakL,k dYakbr.  (2.2) 

Specifically, we shall analyse in what follows the joint probability density for the 
elements of one and two rows. The joint probability density p0(Ul1, . . . , Uln) of the 
elements of, say, the first row contains the delta function S ( l  IL11a12). Moreover, 
PO must remain invariant under any transformation of the type (1.36), since any such 
transformation only mixes the elements of one row among themselves, but not with 
other rows. We should thus multiply the S-function by an arbitrary function of 
U11, . . . , , U1, that remains invariant under (1.36). Since the only invariant is the norm 
E;",=I 1Ula12, the arbitrary function reduces to a constant, due to the S-function. We 
thus have 

By integrating equation (2.3) over the variables U1,k+l,. . . , U1, we find, for the 
joint probability density of the elements Ul l , .  . . , Ulk, the expression 

k n - k - 1  

pO(Ul1,. * 9 Ulk)=(l-  a = l  lUla12) , n > k .  (2.4) 

Notice that (2.4) remains invariant under the operation (1.36), with U' consisting of 
two blocks, of dimensionalities k and n - k ,  in order not to mix Ull, , . . , Ulk with 
Ul,k+l, . . , , U1,. Consider now the joint probability density of, say, the first and 
second rows, associated with Haar's measure. It can be written as 

because of the normalisation of the two rows and their orthogonality. If we want to 
keep only the first k elements of each row, we have to integrate over the 2(n - k )  
remaining ones. Defining the complex vectors 

rl =(U119 * * * 9 Ulk), r2 = (U21, * ' ' 9 UZk), (2.6) 
their joint probability density is found in appendix 1 to be (9 is the usual step function) 

p o ( r l , r 2 ) ~ [ 1 - r l  *rT - r 2  .rT +(r l  * r T ) ( r 2  -r:)-lrl . r 2 * j 2 ] n - k - 2 9 ( 1 - r : ) 9 ( 1 - r ~ ) .  
(2.7) 

Consider again the particular case of the transformation (1.36),  with U' consisting 
of two blocks, of dimensionalities k and n - k ; such a transformation conserves the 
norms of rl and r2 and their scalar product, so that (2.7) remains invariant. 

For the particular case k = 2, which will be needed later on, equation (2.7) gives 

U1l U12) = (1 - I U1 112 - I U 1 2 I 2  - I U z 1 l 2  - I u 2 2 r  + I U11 U22 - U12U2112)n-4 
po(LI,l U22 

x 9 ( 1  -lU11I2-lU12l2)~(1 - / ~ 2 1 / 2 - / U 2 2 1 2 ) .  (2.8) 
Notice the appearance of the absolute value of the determinant UIIUZZ- UIZUZI, 
which also remains invariant under the transformation considered above. 
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2.2. Applications 

We first analyse the large-n limit of the above results, since this limit is important for 
many applications. Consider the probability of Ul1, given by equation (2.4) with 
k = 1. If we expand its logarithm, we obtain 

(2.9) pO(Ull)a( l - IUl1I  ) 

confirming a conjecture made by Gaudin and Mello (1981). The order of magnitude 
of x ? ~  and y f l  is n-'. The next term in the expansion of lnpo(U11), nxt1, is O(n-') 
and is thus neglected. We thus see that for n >> 1, xll and y l l  are distributed according 
to independent zero-centred Gaussians, with equal variances given by (2n)-'. 

The elastic fluctuation cross section g:l is defined as (\U11-(U11),,12) (see Kawai 
et a1 1973), so that 

n >>1, (2.10) 

2 n-2 - 
n>> l  - exp(-nIU11l2)=exp(-nx?l) exp(-ny:l), 

A 
cr11 = v a r x l l + v a r y l l = l / n ,  

which coincides with the result found by Gaudin and Mello (1981). 
Similarly, the large-n limit of p0(Ul1, U I Z ) ,  obtained from (2.4) with k = 2, is 

pO(~11, U12)aexp(-n 1 ~ 1 1 1 ~ )  exp(-n IU1zI2), n >>1, (2.11) 

that corresponds to two independent zero-centred Gaussians, with the same variance 
l / n .  Equation (2.9) follows from (2.11) by integration. With the same procedure, 
the n >> 1 limit of (2.8) corresponds to four independent zero-centred Gaussians with 
variance l / n .  

We now apply the results of § 2.1 to the ensemble of U matrices defined by Gaudin 
and Mello (1981), which is of maximum entropy, subject to the constraint ( U )  = fixed, 
the basic measure being given by dh(U) .  The differential probability associated with 
that ensemble is given by 

dp(U)  = exp(-Re Tr p U )  d h ( U ) / I  exp(-Re Tr @U') dh(U').  (2.12) 

Here p is a matrix of Lagrange multipliers that allows fixing of (U) .  
The above results allow the study of the distribution of the variables U11, { U ~ I ,  U12}, 

{Ul1, U12, UZ1, UZ2} in some particular cases. We start with p(Ull) .  Consider the 
problem in which the average of all U,, is kept zero except that of Ull which, for 
convenience, is taken to be real (Gaudin and Mello 1981), with an arbitrary value 
between -1 and +1, i.e. 

~ 1 1 ~ ( ~ 1 1 ) + 0 ,  ( y l l ) = O ,  (U,,)=. * = ( U n n ) = O ,  (2.13) 

where we have used the notation of (2.1). 
From (2.12) and (2.4) with k = 1, we can immediately write p(Ull) as 

P(Ull)Eexp(-px11)(1- IU11/2)n-2. (2.14) 

The large-n limit of p(Ull)  of equation (2.14) cannot be obtained by simply 
replacing the second factor in equation (2.14) by the Gaussian of equation (2.9), since 
(2.14) is now peaked at a value fll f 0 (notice that this naive replacement would 
give variances (and hence ayl) independent of the centroid f l l ) ;  we must therefore 
approximate the second factor in (2.14) for values of xll in the vicinity of ill. Writing 

x11 =.f11+511 (2.15) 
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in (2.14), we have 

-pxl l+(n-2) ln  (2.16) 

Expanding the In up to second order in rll and y l l ,  we have 

(2.17) 

We have cancelled the linear term in rl1 with the choice 

p = 2n~11/[1- (~11)~]. (2.18) 

Notice that we are keeping f l l  fixed and arbitrary between -1 and +1, and taking 
the limit n >> 1. The next term in the expansion of the exponent in (2.16) is O(n-’) 
and is thus neglected. Within this approximation, in the present case of total absorption 
in all channels and arbitrary absorption in channel 1, tll and y l l  are thus statistically 
independent, they have a Gaussian distribution centred at f l l  and 0, respectively, 
and variances given by 

1 - ( f l l I2  var y l l  = 
1 [I- (f1d2I2 var x l l  = - 

2n 1 +(fl1)’ ’ 2n 
(2.19) 

The fluctuation cross section is now 

(2.20) fl 4 -1 2 
gll  =va rx l l+va ry l l  =[ l - ( f l l )  ] P l / n ,  

where we have introduced the transmission factor (Kawai er a1 1973) 

Pc = 1 - l(UCC)l2. (2.21) 

That both variances in (2.19) depend on i l l  is a consequence of the way in which 
el1 and y l l  appear in the second factor of (2.14) which, in turn, arises from the 
normalisation of the first row (unitarity). That var xll  decreases as f l l  increases can 
be seen very clearly in the simple case of the distribution of x l l  alone. From (2.4) 
we have 

(2.22) 2 n-3 /2  P o ( x l l ) ~ ( ~ - x l l )  , 

so that from (2.14) 

(2.23) 2 n-3 /2  P(xldaexp(-px11)(1 -x l1 )  . 
We saw that if the Gaussian approximation is used for po(xll), p(xl l )  is a shifted 
Gaussian with the same width. However, the exact expression for po(xll) tends to 
zero more rapidly than the Gaussian approximation, since it has to vanish at lxlll = 1, 
with the net effect of narrowing the distribution resulting from the product (2.23). 
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In a similar way, again under conditions (2.13), the distribution of U11 and U12 

is obtained from (2.4) (with k = 2) and (2.12) as 

~ ( ~ 1 1 ,  U12)aexp(--pxll)(l- /U11I2- 1 ~ 1 2 1 ~ ) " - ~  (2.24a) 

which is again Gaussian in the n >> 1 limit. Equation (2.17) follows upon integrating 
(2.24) over U12. The fluctuation cross sections ay1 and a72 are now given by 

U71 = [l - (i11)4]-1P1Pl/n, ay2 = p1p2/n. (2.25) 

Recall that P1 # 1, P2 = . . . = P,, = 1; equations (2.25) are then in the form of a 
Hauser-Feshbach (1952) expression, P,Pb/Tr P, with a correction lactor in the elastic 
case. We notice the interesting fact that the correction factor, which is 1 for total 
absorption, is quite close to unity up to, say, f l l  = 0.5, where it takes the value 1.07. 
This is therefore the same property for the so-called elastic enhancement factor W, 
which is defined as the ratio of the correction factors for the elastic and inelastic cases. 

Finally, we consider the distribution of U11, UIZ, U21 and U22. We shall analyse 
this in the case when the averages of Ull  and U22 are different from zero and real, 
while all the others are taken to be zero, i.e. 

z l l = ( x l l ) f 0 ,  (y11)=0, i z z  = (x22)  + 0 ,  (y22)  = 0, 

(U33) = . . . = ( Un,, ) = 0 ,  (Uab) = 0, a # b. 

From (2.8) and (2.12) we have 

X (1 - IUii12- IUi212- IUziI2- IUZZ/~ + IU11U22- UIZUZII~)" -~ .  (2.26) 

The large-n limit of this expression is obtained again by expanding the above expression 
around the mean values of the variables involved. We make the substitution 

x11=211+511, x 2 2  = z 2 2  + 5 2 2 ,  (2.27) 

take the logarithm of (2.26) and keep up to quadratic terms in 511, ~11,522, y22, XIZ,  y12, 
x21, yzl.  The linear terms are again cancelled by an appropriate choice of p1 and O z .  
The result is 

x [x:2 + Y:2 +x:1 + Y :1 +2f11f22(1:12x21- Y 12Y21)1), (2.28) 

which corresponds again to Gaussian variables, but now U12 and Uzl are no longer 
independent. The bilinear expression can be diagonalised to find the variances, with 
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the result for the fluctuation cross sections 

fl 1 PlPl fl 1 P1P2 

I - ( z ~ ~ ) ~  n ' n ' 

fl 1 P2P1 fl 1 PZPZ 
1 - ( z ~ ~ ) ~  n ' 1 - ( ~ 1 1 ~ 2 2 ) ~  n ' 

U 1 2  = Cl1 = 

(2.29) 

U 2 2  = U21 = 

which correspond again to Hauser-Feshbach expressions with correction factors that, 
for i l l  and iZ2 up to 0.5, do not differ appreciably from unity. 

3. The problem of unitary and symmetric matrices S 

3.1. The joint marginal probability density for the S matrix elements 

We now address ourselves to the real purpose of this paper, which is the study of an 
ensemble of unitary and symmetric matrices S of order n, governed by Dyson's 
measure dp (S)  of (1.2).  We write 

(3 .1)  Sab = x a b  + i Yab 

and define a probability density just as we did in (2.2), replacing U by S and x,  y by 
x, Y. 

Specifically, we have been able to study the joint probability density for the 
elements of one row and that for the 2 x 2 block {Sll, S12, Szl, S Z ~ } .  This we present 
in what follows. 

Consider, say, the first row, and designate by p o ( S I 1 , .  . . , S1,) the corresponding 
probability density. From unitarity, p o  contains the delta function S ( 1 -  Z:=, lSlR12). 
Consider all those transformations of the type (1.1) which do not mix S11, . . . , SI, with 
the other S-matrix elements: those transformations should keep p o  invariant, because 
of the defining property (1.2). In contrast to the previous section, this does not happen 
now for any transformation (l.l), but only for a restricted class: functions of the 
corresponding invariants will now appear in the expression for pa .  We shall determine 
this class. Equation (1.1) can be written as 

and, for the first row, 

g l b  = E  u?au&sup. 
a p  

If the RHS of (3 .2b)  has to contain SIP only, then 

( 3 . 2 ~ )  

(3 .2b)  

The matrix U o  will then have the structure 

ie"1 o . . .  0 1  
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The transformed matrix elements (3.2b) are then 

( 3 . 2 ~ )  

Since “!?Lo is unitary (with dimensionality n - l), functions of S11, . . . , SI, that remain 
invariant under ( 3 . 2 ~ )  are 

But the last quantity coincides with 1 - 1Sllj2, from unitarity. Our distribution p o  can 
then be written as 

(3.6) 

We have no way to specify f further just from invariance properties. However, it 
turns out that the probability density for Sl1 alone can be found independently, and 
f can then be calculated therefrom. We now see how this can be done. 

Every unitary and symmetric S can be written as 

s = UUT, (3.7) 
where U is unitary. The transformation (1.1) on S,  

s=  Uo(UUT)UoT=(UoU)(UoU)T= OOT (3 .8a )  

with 

0 = UOU, (3.86) 

can then be interpreted as the transformation (1.3) on U. We can thus write the 
following relation between Dyson’s and Haar’s measures (Mello and Seligman 1980): 

(3.9) 

Therefore, the distribution of S can be found in terms of that of U. In particular, to 
find the probability density p0(Sl1) we realise that, since 

d p  (S (U) )  = dh ( U )  

n 

s11= 1 (Ula)’, (3.10) 

all we need is the joint probability density for the elements of one row of U, which 
was given in equation (2.3). We therefore have 

a = l  

dUab ZE dXab dyab, u a b  = xab + iYab. (3.11) 

The details of the calculation are given in appendix 2, where the following result 

Po(S11)~(1-  /Sll12)(n-3)’2. (3.12) 
This result has a structure similar to the one found for unitary matrices, equation 

is found: 

(2.4) with k = 1, except for the value of the exponent. 
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On the other hand, po(S11) can be obtained from (3.6) by integrating over 
S12,. . . ,Sin, i.e. 

Po(S11)Kf(lS1112) I S( 1- f /S1Ql2) dS12 - dSnn 
a = l  

=f(ls1112)(1 - Is11/2)”-2. 

Comparing (3.12) and (3.13), we find f(lS1112) as 
2 ( l - n ) / 2  

f(ls1112)w-l~111 ) 9 

so that the joint distribution (3.6) for the first row becomes 

po(s11, * * - 9 sl“)a(1-/s11~2)L‘-n)’2~(1- Q = l  f ls1Q12)* 

(3.13) 

(3.14) 

(3.15) 

In contrast to equation (2.3), where all the elements of a given row appear on the 
same footing, the factor f (IS11(’) distinguishes now between the diagonal and off- 
diagonal matrix elements. 

Several interesting consequences can now be obtained from equation (3.15). 
Integrating (3.15) over the variables S l , k + l ,  . . . , S1, we find, for the joint probability 
density of the elements Sll, . . . , Slk, the expression 

(3.16) 

Integrating (3.16) over Sll we find, for the joint probability density of the non- 
diagonal elements S12, . . . , Slk, 

k 

xzF1(?,1;n-k+1;1- Q = 2  lSlQ12), n > k ,  (3.17) 

where ZFI is the usual hypergeometric function. The asymmetry between diagonal 
and non-diagonal matrix elements is again apparent from the above results (3.16) and 
(3.17). 

The probability density of the element Si2 can be obtained from (3.17) putting 
k =2:  

PO(S12) o= (1 - IS1212)n-22Fl((n - 1)/2, 1; n - 1; 1 - IS12I2), (3.18) 

From the symmetry properties of Dyson’s measure, we can now say that equation 
(3.12) gives the probability density of any diagonal S-matrix element and equation 
(3.18) that of any non-diagonal element. 

The distribution po(S12) for n = 2 can be obtained directly from (3.15) for n = 2, 
by integrating over Sll, with the result 

Po(Srz)= 1/ISlZl, n =2.  (3.19) 

n >2. 

Use of the relation 

#I(;, 1; 1; 2) = (1 - 2 ) p  

shows that (3.18) is also valid for n = 2. 
(3.20) 
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From the above results it is easy to find some of the moments of the various 
distributions, which turn out to be important for several applications. From (3.16) 
with k = 2 one can obtain, by direct integration, the crossed moments of the variables 
Sll  and S12: 

(3.21) 
r(n)r(m/2+ l )r(I /2+ 1)T((n +m - 1)/2) 

2 r ( 4 2  + n - i ) r ( ( l +  n + m + 1)/2) 
' (/S111f/S121m)o = 

The crossed moments of the variables SlZ, S13 are easily found by integrating /S1211(S13/m 
times the joint probability density po(S1l, S12, S13) obtained from (3.16) with k = 3, 
with the result 

(3.22) 

Equations (3.21) and (3.22) can be seen to agree with the particular cases that were 
calculated by Mello and Seligman (1980). 

We now generalise the above analysis to find the joint probability density of the 
block of four S-matrix elements ISll, SlZ, SZ1, SZ2}. From (3.7) it is clear that we now 
need the joint probability density of two rows of U, which was given in equation (2.5). 
The calculation is sketched in appendix 3, the result being 

s11 s12 2 2 ( n - 5 ) / 2  Po(sz1  s22) ~ s ( s l z - S z l ) ( ~  - l s l l 1 2 - l s 2 2 1 2 - ~ / s 1 2 1 2 + I ~ l l s 2 2 - ~ s 1 2 ~  I ) * 

(3.23) 

This equation has a structure similar to that of equation (2.8) for unitary matrices, 
except for the value of the exponent and the appearance of the delta function 
S(S12 - SZ1). The reason for this similarity is not clear at present; a proper understand- 
ing of it would probably simplify the calculation of the S-matrix distributions. 

It is clear that po(g;; &) should remain invariant under those transformations 
(1.1) in which U o  is of the type 

0 . . .  0 
U 2 1  U 2 2  

uo= [ul lo 

0 

where the matrices 

(3.24) 

(3.25) 

and Q 0  are, respectively, 2 x 2 and (n - 2) x (n - 2) unitary matrices. In fact, the 
absolute value of the determinant SllS22 - (S12)2 remains invariant under the transfor- 
mation 

(3.26) T s' = usu 

where 
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Noticing that we can write 

( & l & 2 ~ 2 1 & 2 ) T  = U x U ( S 1 1 S 1 2 S 2 1 S 2 2 ) T  (3.27) 

where x indicates the usual direct product, we see that the norm lSlll* + IS12I2 + IS21I2 + 
lS22/2 is also invariant. As a result, the distribution po of equation (3.23) remains 
invariant, too. 

3.2. Applications 

We first analyse the large-n limit of the above results, since in many practical cases 
one deals with many open channels. 

For n >> 1, p0(Sl1) of equation (3.12) gives 

(3.28) 

showing that in this limit Xll and Yll become independent zero-centred Gaussian 
variables, with the same variance l l n .  The fluctuation cross section a ? ~  is thus given 

uYl =(~S11-(S11)0)2)0=varXll+var ~ l l = 2 / n ,  (3.29) 

po(S11)Cc(l -~s11~2)(n-3)’2- -exp(-znlSlll 1 2 =exp(-4nx:1) exp(-SnY:l), 

by 

which differs by a factor 2 from the corresponding expression (2.10) for U. 
Similarly, the large-n limit of p0(Sl1, SIZ), obtained from (3.16) with k = 2, is 

2 ( n - 5 ) / 2  IS12l2 n - 3  
Po(S11, S12)=(1 -Is111 1 (1 - - ,sll12) “exP(-4nIS11I2) exp(-nIS12l2), 

(3.30) 

so that Sll  and S12 become independent zero-centred Gaussian variables, in agreement 
with the results of Agassi et a1 (1975). The fluctuation cross sections are given by 

aTl = var sll = 2/n, cr& = l / n ,  (3.31) 

exhibiting in a clear fashion the effect of f(lSll/2) (equation (3.16)) in generating the 
elastic enhancement factor W = 2. 

With the same procedure, the n >> 1 limit of (3.23) is (3.30) multiplied by the 
Gaussian exp[-(n/2)lS~21~] and the delta function S(S12 -&I). 

We now apply the results of § 3.1 to the ensemble of S-matrices that was defined 
by Mello (1979) and Mello and Seligman (1980) as the one of maximum entropy, 
subject to the constraint ( S )  = fixed, the basic measure being dp(S) .  The differential 
probability associated with that ensemble is given by 

(3.32) 

where p is a matrix of Lagrange multipliers that allows the fixing of ( S ) .  
The above results allow us to study the distribution of the variables SII,  {Sll, S12}, 

{Sll, S12, SZ1, SZ2} in some particular cases. Consider the problem in which the average 
of all Sab is kept zero, except that of S11 which, for convenience, will be taken real, 
with an arbitrary value between -1 and 1, i.e. 
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The large-n limit of these expressions is 

(3.36) 

where tll =X11-211. The fluctuation cross sections can now be written as 

fl P1P2 
c712 =-, R 2 PlPl 

1 -I(s11)14 n ’ n ff11 = 

where Pc is the transmission factor (Kawai et a1 1973) 

(3.38) 

P c  = 1 - l(ScJl2. (3.39) 

That tll, Yll and Slz are Gaussians in equation (3.37) agrees with the results of 
Agassi et a1 (1975). 

We now consider the distribution of the four matrix elements Sl l ,  S12, Szl and 
S22. This we shall analyse in the case when the averages of S11 and S22 are different 
from zero and real, and arbitrary between -1 and +1, while all the others are taken 
to be zero, i.e. 

2 1 1  = W 1 1 )  # 0 ,  (Y11)=0, 2 2 2  = W 2 2 )  # 0 ,  (Y22) = 0 
(3.40) 

, 3 3 3 )  = . . . = (Snn) = 0, 

From (3.23) and (3.32) we have 

(Scab)  = 0,  a # b .  

2 ( n - 5 ) / 2  x [l - (jS11I2 + Is22j2 + 21S12/*) + ISllS22 - (Sl2) I1 S(S12 -S21). 
(3.41) 

This expression can be approximated in the large-n limit by expanding the logarithm 
around the mean values (3.40) (where xll and Pll are kept fixed, with arbitrary values 
between -1 and +1) just as was done in going from (2.26) to (2.28), with the result 

(3.42) 
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showing that the real and imaginary parts of SI1 and SZ2  are independent Gaussian 
variables. The resulting fluctuation cross sections are 

It is interesting to compare (3 .43 )  with the result of Agassi et a1 (1975), which is 
also valid in the large-n limit. The difference between the two results is the extra 
factors fob = (1 - /S,,121Sbb12)-1 that appear in the present treatment. We notice, just 
as we did in the previous section, that even for sll and szZ as large as 0.5, this 
factor does not differ appreciably from unity (f = 1.07). 

Appendix 1. Proof of equation (2.7) 

The joint probability density for the first k elements of say, the first and second rows, 
can be obtained by integration of equation (2 .5 )  over the 2(n - k )  remaining elements. 
To begin, we write the two-rows joint probability density as 

( A l . l )  

(A1.3) 

Now it is convenient to separate the variables that will be integrated from those 
that will not. With this purpose we define the vectors 

Rh = ( X ~ I ,  Y a 1 9  * * 9 X a k ,  y a k ) '  (A1.4) 

such that R, = (Rh, R;) and MR, = (M'Rh, M"R6). M '  and M" are defined as in 
(A1.3), and have dimensionalities 2k and 2(n - k ) ,  respectively. Thus we have 

R:= (xa.&+l, Y a , k + l ,  . * - 9 Xant y o n ) ,  
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In order to integrate over R'I' and RS we write vectors in spherical coordinates, i.e. 

Po(,":) =I ~ ( ~ : - R ' ~ ~ ) S ( ~ : - R S ~ ) S ( ~ + R ~ ' . R ; ) S ( P + R ' ~  M~R;) 

R 112m-1  1 dRy d(2m)OlR;2m-1 dR; d ( 2 m ) 0 2  (A1.6) 

where 
2 I 2  a,  = l - R , ,  m = n - k ,  

a = R i  * Ri, 
d(2m)fla = sinzm-' 8, de, sin 

p = Ri * M'R;, 
2m-3 

cpu1 dqal . . . 
=sin2m-2 8, de, dw,. 

In the procedure of integration we start by evaluating the integral 

(A1.7) 

I = S(a - a  * r ) S ( p  - b  r )  d'"'O, (A1.8) 

where a and b are any two fixed vectors and r is an m-dimensional real vector whose 
orientation is integrated over. It is convenient to align the vector a with the ' z  axis', 
so that, in spherical coordinates, 

a = a(l ,O, . , * , O) ,  

r = r(cos e, sin 8 cos ql, . . . , sin q m - 2 ) ,  

We obtain for I the following result: 

J 

b = b(cos eo, sin eo, 0, . . . , 0) ,  
(A1.9) 

d"b, = de do. 

Using this result to integrate over Ol in equation (A1.6) we have 

sin3-'"' (R;, M"R;) 
RSIM"R2I2RY2 

po(,":) OC S(a:  - R i'2)S(a: - RS2) 

2 4  cos(Ri, M"R;) m-2 

(A1.lO) 

[ - (&)2 - ( IMi;iR';)2 - R y2R l!IMllRS/ 1 
X ~ ~ ~ 2 m - 1  112m-1 R2 dRi'dRId'2m'02. 

Here it can be seen that 

cos(R2, M'IR;) = Rz M"RS/IR;j IM"R;I = 0 (Al.11) 

and the integral takes the form 

(A1.126) 

8 ( a 2 )  is the usual step function, which appears as a consequence of unitarity. Finally, 
to write the result in a more transparent form, we define the complex vectors 

r l =  (U11, * . 9 Ulk), r2 = (U21, . . . , U Z ~ ) ,  (A1.13) 

a (a  2 2  - a 2  - p 2 ) m - 2 8 ( a : ) 8 ( a : ) .  
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in terms of which we have 

po(r1, r2) E .9(1 - lr1I2)6(1 - lr212)[1 - lr1lZ - lr212 + 1~1121~212 - If1 * rT /21m-2, 
which is equation (2.7) of the text. 

(A 1.14) 

Appendix 2. Proof of equation (3.12) 

The probability density p0(Sl1) is given by 

Uab = xab + iYab, 

We define the vectors 

x1= ( X l l r  x12, a ,  Xln), 

and express them in spherical coordinates, to have 

y 1 =  (Y11, y12, ‘ ‘ ’ , Yln), 

P0(Sll) = 1 s (X11 -x: + y 3s (Y11- 2x1 * y1)S (1 - x: - y :) 

Xx; - ’  dxl sinn-’ O1 dol duly;-’ dyl sinn-’ O 2  de2 d u 2  

d u i n ,  
(A2.1) 

(A2.2) 

(A2.3) 

where Sll =Xll +iYll  and dui  is a shorthand notation to symbolise the remaining 
angular part. 

The integration can be carried out directly with the same procedure used in 
appendix 1 of fixing one of the vectors along the ‘ z  axis’, while we integrate over the 
other, in such a way that the relative angle (XI, y l )  can be identified with the correspond- 
ing angle ei. We obtain 

2 ( n - 3 ) / 2  (1 --Pill 1 2 ( n - 3 ) / 2  = P O ( ~ l l ) ~ ( ~ - - ~ ~ l  - Y11) 

Appendix 3. Proof of equation (3.23) 

To obtain the joint probability density for the four S-matrix elements 
{SII, S12, SZI, S Z Z } ,  we must carry out the following integration: 

s11, SlZ s22) = J ( ~ 1 1 - 1  (u1c)2)s(s12-c ulcuzc) 

x s ( s 2 1 - 1  uZcUlc)S(S22-~  (u2c)’)6( 1 - 1  IUlC/2) 

x s( 1 - 1  lu2c12)6( c (XlCX2C + Y lcY2c )) 

(A3.1) 
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where again Uab = Xab  + iyab. Defining the vectors 

and expressing them in spherical coordinates, we write the joint probability density as 

x S (YlZ - Y 1 ' x2 -x1 * YZ)S(XZl -x1 * x2 +Yl * y2) 

x S (  Y21- Y 1 * x2 -x1 a YdS( Y22 - 2x2 * y2)8(x1 ' x2 + y1 * y2) 

x S(Xl * y2 -y1 * XZ)S(X11 -x: + y:)S (X22 - x: + y 3 
XS(l-x:-y:)S(l-X:-y:)x;-' dxl d(")f lXl . .  . y2n-l dy2d'")fly2. 

(A3.3) 

Now we start by integrating the angular part of y2. For this, we select all those 
delta functions whose argument contains a scalar product of y2 with the other vectors. 
We thus have the integral 

P = Y11, 

Y = Y22, 

P =y1 'XZ,  

a =X12-x1 ' x2, 

U = x21 -x1 * x2, 

v =x1 ' X 2 .  

It is evident that the integral I reduces to 

P = Y12-Y1 'XZ, 

7 = Y21- y 1 * x2, (A3.5) 

I = S ( c r  - a )  S ( 7  - P ) S ( v  -a)S(p - p )  

(A3.6) 

x 5 S(a + Y I  * YZ)S(P - X I  * Y Z ) ~ ( Y  - 2 ~ 1 .  Y Z )  d(m)flyz. (A3.7) 

Clearly, the first delta is a consequence of the S-matrix symmetry. Then, to obtain 
the integral I we need the following integral, 

G1= S ( a + a  * r ) S ( p + b  * r ) S ( y + c  *r )d(m)f l r ,  (A3.8) 

where a, b and c are any fixed vectors and r is an m-dimensional real vector whose 
angular part is integrated. Fixing a along the ' z  axis' (1, 0 .  . . 0), the vector b in the 

5 
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plane defined by the ‘ z  axis’ and the vector (0, 1 , O .  , . 0) and c with components along 
(1, O , O ,  . . .), (0, 1, 0 , .  . .) and ( O , O ,  l , O ,  . . .), we have 

a = a ( l , O , .  . . , O ) ,  6 = b ( C 0 S  @,b, Sin@,b, 0, . . . , o), 
c = c (cos e,,, sin e,, cos cp,, sin e,, sin cpc, 0, . . . , 0), 

r = r(cos 8, sin 8 sin cp, sin 8 sin cp cos $, . . .), 
d‘”’0, =sin”-’ 8 

(A3.9) 

cp sin m-4 $ d e  dcp d$ dw. 

As in appendix 2, dw is the remaining angular part whose integral is a constant. 
The integration is direct and gives for G1 the following result: 

[( 1 - X Z ) ( 1  - y ’)( 1 - z 2 ) ] ( m - 5 ” 2  
abcr3 sin OQb sin e,, sin cpc 

GI 

with 

a P 4- brx COS @,b 

(1 -x2)1/26r sin @ab’ y = -  x =-- 
ar ’ 
y + crx cos 6 a b  + cry (1 - x ’)l” sin e,, cos e,, 

(1 - x ’ ) ~ / ~ ( I  -y’)’/’cr sin e,, sin (p, 
z = -  

(A3.10) 

(A3.11) 

If we use this result to evaluate the integral that appears in equation (A3.7), where 
we choose 

x1 =x1( l ,  0 , .  . . , O), 

x2 = xz(cos 02, sin O2 cos c p 2 ,  sin 0’ sin c p 2 ,  0, . . . , 0), 

y 2  = y2(cos 8, sin 0 cos cp, sin 8 sin cp cos $, . . .), 

y l  = yl(cos el, sin el, 0 , .  . . , 0), 

(A3.12) 

I becomes 

(A3.13) 

with 
2 J(el ,  . . . , y2)  = 1 -COS’ el -COS’ e2 - COS cp2 + COS’ el COS’ e2 + COS’ el COS’ (pz 

+COS’ e2 COS’ v2 -COS’ el COS’ e2 COS’ v2 - (a/yly2)’(1 -COS’ e’) 
- ( P / X l y 2 ) ’ u  --OS’ c p 2 )  - ( Y / x ~ Y ~ ) ~ ( ~  --OS’ el)  
+ ( ~ / X ~ Y ~ ) ’ ( C O S ’  el COS’ e2 - COS’ e l  COS c p 2  

- COS’ e2 COS’ cpz +COS’ el COS’ ez COS’ c p 2 )  

- (2ap/xlyly:)(cos el -cos el cos’ e2-sin el sin ez cos e2 cos (0’) 

+(ya/xlx2y:)(cos e2-cos e2 cos’ el-cos el  sin ez sin e l  cos cpz) 

-(pp/y1xzy$) sin el sin ez cos (p2 

+ (2a/xlyZ) sin el cos e l  sin e2 cos ez COS (p2. 

2 

(A3.14) 
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Once we have the function I ,  we need, as an intermediate step towards (A3.3), 
to evaluate the integral 

H(x1, . . . ,  Y22)= [ 1- ( - y11 ) 2 - (  x12 ) 2 - ( 3 ) 2 - (  y 1 2  )2-(&)2 

2XlYl 2XlX2 2XlY2 2YlYZ 2y1y2 

Y12 Y11X12 x12 Y12 Y11+ Y12 Y22X12 2 
- -  - ( 2 3  + 4x:y:x: 4x:y:y: 4x1x2y2 2 2 2  

- Y12 Y22X12 2 2 2  + 

)zcY:2 +x:2 + Y:1Y;z 
4YlXZY2 (4X1Y1X2Y2 

( n - 5 ) / 2  

+2x:2 Yll Y22 - 2 Yll Y:2 Y22 + 2x:2 Y:2 I] (A3.17) 

Finally, making the integration over the magnitudes, we have, after some algebra, the 
followiing result for the four-element joint probability density: 

aS(S12-S21)[1 - I s 1 1 1 2 - / ~ 2 2 1 2 - ~ 2 / ~ 1 2 / 2 + I ~ l l ~ 2 2 - ~ ~ 1 2 ~  2 I 2 1 ( n - 5 ) / 2  9 

(A3.18) 

which is equation (3.23). 
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